Stochastic Collocation Methods via ℓ1 Minimization Using Randomized Quadratures

نویسندگان

  • Ling Guo
  • Akil Narayan
  • Tao Zhou
  • Yuhang Chen
چکیده

In this work, we discuss the problem of approximating a multivariate function by polynomials via `1 minimization method, using a random chosen sub-grid of the corresponding tensor grid of Gaussian points. The independent variables of the function are assumed to be random variables, and thus, the framework provides a non-intrusive way to construct the generalized polynomial chaos expansions, stemming from the motivating application of uncertainty quantification. We provide theoretical analysis on the validity of the approach. The framework includes both the bounded measures such as the uniform and the Chebyshev measure, and the unbounded measures which include the Gaussian measure. Several numerical examples are given to confirm the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-index stochastic collocation for random PDEs

In this work we introduce the Multi-Index Stochastic Collocation method (MISC) for computing statistics of the solution of a PDE with random data. MISC is a combination technique based on mixed differences of spatial approximations and quadratures over the space of random data. We propose an optimization procedure to select the most effective mixed differences to include in the MISC estimator: ...

متن کامل

ODE solvers using band-limited approximations

Abstract. We use generalized Gaussian quadratures for exponentials to develop a new ODE solver. Nodes and weights of these quadratures are computed for a given bandlimit c and user selected accuracy ǫ, so that they integrate functions e, for all |b| ≤ c, with accuracy ǫ. Nodes of these quadratures do not concentrate excessively near the end points of an interval as those of the standard, polyno...

متن کامل

Stochastic Collocation Algorithms Using `1-minimization

The idea of `1-minimization is the basis of the widely adopted compressive sensing method for function approximation. In this paper, we extend its application to high-dimensional stochastic collocation methods. To facilitate practical implementation, we employ orthogonal polynomials, particularly Legendre polynomials, as basis functions, and focus on the cases where the dimensionality is high s...

متن کامل

On Generalized Gaussian Quadratures for Bandlimited Exponentials

We review the methods in [4] and [24] for constructing quadratures for bandlimited exponentials and introduce a new algorithm for the same purpose. As in [4], our approach also yields generalized Gaussian quadratures for exponentials integrated against a non-sign-definite weight function. In addition, we compute quadrature weights via l and l∞ minimization and compare the corresponding quadratu...

متن کامل

Sparsest Error Detection via Sparsity Invariant Transformation based ℓ1 Minimization

This paper presents a new method, referred to here as the sparsity invariant transformation based `1 minimization, to solve the `0 minimization problem for an over-determined linear system corrupted by additive sparse errors with arbitrary intensity. Many previous works have shown that `1 minimization can be applied to realize sparse error detection in many over-determined linear systems. Howev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2017